
Coding for Performance in Progress

Sean Overby
Senior Technologist, Solvepoint Corporation

http://www.solvepoint.com

Overview

• The lifeblood of a company is growth.
Corporate growth puts increasing load
on IT infrastructures.

• Managing increasing loads well is a
key challenge to IT.

• All companies have a set of key
algorithms and processes that are
both computationally intensive and
core to the functioning of the
business.

Overview

Core Intensive Algorithms

• Material Requirement Planning runs.
• Financial Reporting.
• Item Pricing.
• Examples of your own?

When is 30ms too long?

• How many milliseconds are in 24 hours?
• How many 30ms operations can you complete in 24 hours?
• What if you have more operations to perform than there are hours in the

day?

Core Algorithms

• Computational load of core algorithms will increase with scaling business
volumes and require special care and handling.

• Consider your core algorithms, particularly ones that are, or may be, sensitive
to load.

• Taking the time to reflect on future growth and it’s effects on your core
processes now will save you major headaches and fire fighting later on.

• It’s not a question of if, it’s a question of when.

• If you actually get the time to do this (without making the time on your own)
I’ll be stunned.

Caveats

• Your mileage not only can vary, it will. You must run your tests on your code
on your servers.

• While some of the next findings may be indicative of a persistent keyword
variance, don’t count on it. You may test examples shown here on your Linux
server running Progress 9.1E05.04 (yes that’s a feeble joke) and find out the
exact opposite of what you see here.

• Most of the variances we will look at are small, remember that small variances
add up over hours and days. Ask yourself how many repeat operations are
performed enterprise wide during a 24 hour period in your IT infrastructure.

Block Processing

DO or REPEAT?

Block Processing

DO vs. REPEAT

• DO has no implicit transaction and buffer scoping, or
undo handling.

• REPEAT has implicit transaction, buffer, and undo
handling.

• How many block iterations take place in your
Enterprise each day?

Delta Do vs. Repeat

-200

0

200

400

600

800

1000

1200

1400

1600

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96
Iterations (200k)

M
ill

is
ec

on
ds

Delta Do vs. Repeat

Increasing time delta, with
repeat block taking an

increasing amount of time

Code Blocks

Procedure or Function?

Code Blocks

Function vs. Procedure

• Functions have a single possible return value.

• Using a Function instead of a Procedure simply for
the slight performance gain where a procedure is
technically the correct answer...

Function vs. Procedure

-100

0

100

200

300

400

500

600

700

10
0

43
00

85
00

12
70

0

16
90

0

21
10

0

25
30

0

29
50

0

33
70

0

37
90

0

42
10

0

46
30

0

50
50

0

54
70

0

58
90

0

63
10

0

67
30

0

71
50

0

75
70

0

Iterations (1k)

M
ill

is
ec

on
ds

Delta Function vs. Procedure

Bonus Question: True or False,

you can RETURN ERROR from a

function?

Increasing time delta, with
procedure calls taking an
increasing amount of time

Variables

Array or Variable?

Variables

Variable Vs. Arrays

• During assignment, a regular variable will perform faster than an array
element.

• Consider replacing array elements with single variables.

Delta Var vs. Extent Time

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

10
00

0

40
00

0

70
00

0

1E
+0

6

1E
+0

6

2E
+0

6

2E
+0

6

2E
+0

6

3E
+0

6

3E
+0

6

3E
+0

6

3E
+0

6

4E
+0

6

4E
+0

6

4E
+0

6

5E
+0

6

5E
+0

6

Milliseconds

Ite
ra

tio
ns

Delta Var vs. Extent Time

Increasing time delta, with
the assignment of array

extents taking an increasing
amount of time

Functions as loop terminators

• DO cnt = 1 TO NUM-ENTRIES()

Functions as loop terminators

The Dreaded “Num-Entries” Loop

• Functions that do not need to be evaluated
every loop should never ever go in the block
statement.

• DO cnt = 1 to NUM-ENTRIES(someList) is the
poster child…

Increasing List Size - Fixed Iterations

0

1000

2000

3000

4000

5000

6000

7000

20 40 80 160 320 640

List Entries

M
ill

is
ec

on
ds

Num-Entries in Loop
Num-Entries before Loop

Increasing Iterations - Fixed List Size

0

2000

4000

6000

8000

10000

12000

14000

16000

1 2 5 10 20 40 80 160 320

Iterations (thousands)

M
ill

is
ec

on
ds

Num-Entries in Loop
Num-Entries before Loop

Short Circuiting

Ensure least expensive tests come first for short circuiting

• This is one of the first ‘low hanging’ fruit I look for after query structures, it’s
been that significant in improving performance in production programs.

• Least expensive can be by operation type, e.g. CAN-FIND, or by highest
likelihood of failure.

• ‘Fail fast’, boolean operation in and’ed groups should be in order of highest
chance of failure from left to right.

• IF FailMost() AND ExpensiveDBOperation() OR FailMoreButNotAsMuch() AND
EvenNastierExpensiveDBOperation() THEN

Short Circuiting

Delta Fail Order

0

500

1000

1500

2000

2500

3000

3500

4000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39
Iterations

M
ill

is
ec

on
ds

Delta Fail Order

Increasing time delta, with
least fail first taking an

increasing amount of time

Short Circuiting

PROCEDURE test1:
DO cnt = 1 TO limit:

IF funcOne() AND funcTwo() AND funcThree() THEN .
END.

END PROCEDURE.

PROCEDURE test2:
DO cnt = 1 TO limit:

IF funcThree() AND funcTwo() AND funcOne() THEN .
END.

END PROCEDURE.

FUNCTION funcOne RETURNS LOGICAL:
DEFINE VARIABLE ist AS LOGICAL NO-UNDO.
DEFINE VARIABLE cnt AS INTEGER NO-UNDO.
DO cnt = 1 TO 10000:
END.
/** Return true 80% of the time **/
ASSIGN ist = (RANDOM(1,100) <= 80).
RETURN ist.

END FUNCTION.

FUNCTION funcTwo RETURNS LOGICAL:
DEFINE VARIABLE cnt AS INTEGER NO-UNDO.
DEFINE VARIABLE ist AS LOGICAL NO-UNDO.
DO cnt = 1 TO 10000:
END.
/** Return true 60% of the time **/
ASSIGN ist = (RANDOM(1,100) <= 60).
RETURN ist.

END FUNCTION.

Bonus Question: How do you tell Progress to

use the alternate random number generator?

Conditional Assignment

IF this THEN ASSIGN x = that ELSE x = this.

OR

ASSIGN x = IF this THEN this ELSE that.

OR

ASSIGN x = this WHEN this
x = that WHEN that.

Conditional Assignment

IF Assigns

0
2000
4000
6000
8000

10000
12000
14000
16000

24
00

00
0

25
00

00
0

26
00

00
0

27
00

00
0

28
00

00
0

29
00

00
0

30
00

00
0

31
00

00
0

32
00

00
0

33
00

00
0

34
00

00
0

35
00

00
0

36
00

00
0

37
00

00
0

38
00

00
0

39
00

00
0

40
00

00
0

Iterations

M
ill

is
ec

on
ds IF Statement

IF in Assign
WHEN in Assign

• IF Statement - IF boolean operation THEN ASSIGN this ELSE ASSIGN that.
• IF in Assign - ASSIGN variable = IF this THEN this ELSE that.
• WHEN in Assign – ASSIGN variable = this WHEN some condition.

• The results of this surprised me. No Delta here, just raw time
scores showing the

difference between various
conditional assignment

options

Conditional Evaluation

IF or CASE?

CASE vs. IF

• Comparing last possible for seven choices.

• In this example use of an IF shows an increasing delta time versus the
CASE statement.

• But… (queue the critical thinking lobe)

Delta IF vs. CASE

-50

0

50

100

150

200

250

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Iterations (1k)

M
ill

iS
ec

on
ds

Delta IF vs. CASE

Increasing time delta, with
the if statement taking an
increasing amount of time

Critical Thinking

PROCEDURE doIf:
IF cString = "ABC" THEN .
ELSE IF cString = "BCD" THEN .
ELSE IF cString = "CDE" THEN .
ELSE IF cString = "DEF" THEN .
ELSE IF cString = "EFG" THEN .
ELSE IF cString = "FGH" THEN .
ELSE IF cString = "GHI" THEN .
ELSE IF cString = "HIJ" THEN .

END PROCEDURE.

PROCEDURE doCase:

CASE cString:
WHEN "ABC" THEN .
WHEN "BCD" THEN .
WHEN "CDE" THEN .
WHEN "DEF" THEN .
WHEN "EFG" THEN .
WHEN "FGH" THEN .
WHEN "GHI" THEN .
WHEN "HIJ" THEN .

END CASE.

END PROCEDURE.

• Question our assumptions.

• Question our methods.

• Question our results.

• What are some issues with testing IF
vs. CASE this way?

Critical Thinking

• Highly unlikely that real-world code will have seven levels of IF/THEN/ELSE (we
hope).

• Only testing the last condition is only testing it’s most extreme point.

• As it turns out comparing the first condition gives the IF statement an edge over the
CASE.

Delta IF vs. CASE

-100

-80

-60

-40

-20

0

20

40

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97

Iterations

M
ill

is
ec

on
ds

Delta IF vs. CASE

Decreasing time delta, with
the if statement taking a

decreasing amount of time

I/O

• What’s the slowest part of the computer?

• No unbuffered output.

• No network drives.

• Preferably no internal File I/O whatsoever.

• Monitor temp file sizes and access.
– Watch for growing/large SRT files – sorting on the client, check your indexes.
– Growing large DBI files – Large Temp Tables, consider the –Bt startup

parameter.
– Growing large LBI files - Ensure NO-UNDO option on variables, check for

many sub-transactions.

Bonus Question: What’s the

second slowest part of the

computer?

The Scientific Method

• 1. Observation and description of a phenomenon or group of
phenomena. Test the code and gather performance
statistics.

• 2. Formulation of an hypothesis to explain the phenomena. In
physics, the hypothesis often takes the form of a causal
mechanism or a mathematical relation. Create a metrics base-
line. ok I’m *reallyyyyy reaching here*

• 3. Use of the hypothesis to predict the existence of other
phenomena, or to predict quantitatively the results of new
observations. Maintain metric base-lines through code
revisions.

Applied to Code Performance

• Question every piece of code in detail.

• Monitor code performance, CPU, I/O, Memory usage.

– Compare keyword performance variances
• DO vs. REPEAT
• FUNCTION vs. PROCEDURE
• IF vs. CASE

• Create base-line performance statistics.

• Update performance base-lines when deploying changes and keep a history.

• Repeat your experiments for every change.

What To Test

• Underlying keyword implementations may vary.

• For instance, DO vs. REPEAT. Do has no implicit transaction and buffer scoping
or error retry behaviors. There is small but increasing delta between execution
times under scaling loads.

• These deltas typically are tiny, for normal processing can be insignificant (but it
still adds up). However for core business algorithms which need to scale under
immense load they can add up to hours of CPU time.

• The delta is the important measurement, therefore underlying performance
variations will be irrelevant. This is in contrast to measuring absolute
performance where the underlying variations become a complicated variable in
the measurement.

How to Test

• Tools
– Windows: www.sysinternals.com, Process Explorer, FileMon
– Unix: iostat, vmstat (or flavor specific)

• System clock resolution –be aware that your system clock resolution may not
be what you think it is.

• Create a test harness program to allow for consistent test runs.

• There are two basic ways to simulate increasing load:

– Increase Number of Iterations.
– Increase Data Load (e.g. number of records).
– Combining the two will give different results.

How to Test

Applied to Code Performance

• Question every piece of code in detail.

• Monitor code performance, CPU, I/O, Memory usage.

– Compare keyword performance variances
• DO vs. REPEAT
• FUNCTION vs. PROCEDURE
• IF vs. CASE

• Create base-line performance statistics.

• Update performance base-lines when deploying changes and keep a history.

• Repeat your experiments for every change.

So what if it’s still to slow?

• After all possible tweaks and tunes have been made it’s still just not fast
enough due to growth or other reasons.

• There are other options, such as taking the divide and conquer approach.

• But that’s a different presentation ;p.

Bonus Question: How many

individual operations can a

single Progress session perform

simultaneously?

Summary

Key Points

• Identify and document processes that may not scale well under load or are
subject to load increases based on business volume.

• Create baseline performance metrics.

• Run performance metrics after all changes, no matter how minor.
– Performance on ‘live’ code that grows over-time can introduce a slow, subtle and hard

to repair downward performance curve.

• Be wary of taking away any hard and fast rules from your observations as they
may change with a patch, OS, or moon phase.

Summary

Key Points

• Question your methods, question your assumptions, question your results.

• Performance can and will be affected by outside influences.
– Someone adds latest greatest new super report that just happens to attach the same

database server your on.

Question & Answer

Thank you Pete!

Questions or Comments?

Thank You!

Thank you very much for your time and attention!

Sean A. Overby
Senior Technologist

Solvepoint Corporation
882 South Matlack Street, Suite 110
West Chester, PA 19382

Email: soverby@solvepoint.com

http://www.solvepoint.com

Building strong customer relationships through excellent service and
delivery of advanced technology solutions.

Bibliography and Sources

• Introduction to the Scientific Method: http://teacher.nsrl.rochester.edu/phy_labs/AppendixE/AppendixE.html

• SysInternals Tools: http://www.sysinternals.com

	Overview
	Overview
	Core Algorithms
	Caveats
	Block Processing
	Block Processing
	Code Blocks
	Code Blocks
	Variables
	Variables
	Functions as loop terminators
	Functions as loop terminators
	Short Circuiting
	Short Circuiting
	Short Circuiting
	Conditional Assignment
	Conditional Assignment
	Conditional Evaluation
	CASE vs. IF
	Critical Thinking
	Critical Thinking
	I/O
	The Scientific Method
	Applied to Code Performance
	What To Test
	How to Test
	Applied to Code Performance
	So what if it’s still to slow?
	Summary
	Summary
	Question & Answer
	Thank You!
	Bibliography and Sources

