
Anti-Patterns in Progress

Sean Overby
Senior Technologist, Solvepoint Corporation

Overview

• Patterns are common solutions to common
programming problems.

• Just as there are good solutions and bad solutions
there are Patterns and Anti-Patterns.

• Patterns are an Object Oriented concept. There is
no reason not to think OO just because you are
writing in Progress.

Overview

Why Anti-Patterns?

• It is often quicker and easier to solve problems initially with
Anti-Patterns.
– Time / Resource Constraints.

• Inherited Code.

• “If it ain’t broke don’t fix it”.

• We see these patterns over and over again in many Enterprises.

Symptoms

Anti-Patterns Can Cause

• Scalability issues.

• UI portability and Trading Partner Integration Problems.

• Buffer/Transaction scope bleeds.

• Difficulty in finding root causes of errors.

• Extended enhancement / maintenance coding times.

• Difficult to uncover or (maybe even worse) intermittent
performance issues. These may extend to the entire Enterprise.

Overview

Types of Anti-Patterns

• Procedure Isolation / Coupling.

• Data Structure / Access.

• Block Oriented.

• We will discuss some very common anti-patterns that cause
problems in enterprise settings.

Indirect Indirection

Caused by

• Nested or overuse of include files

Can Cause

• Scope bleed – Transaction/Lock (scary)

• Can be (very) Difficult to Maintain

• Can be (very) Difficult to Find Bugs

• Have a tendency to grow over time

Indirect Indirection

Root Causes
• Typically an organic problem, e.g. it is not planned it just happens

over time.

• Solving part of the business problem instead of the whole problem
due to time constraints or other reasons.

• Rush to coding before defining and understanding the entire
business process.

• Lack of or miscommunication between business process resources
and programming resources.

• Excessive cleverness / over engineering.

Indirect Indirection

Solution Pattern

• Use atomic well-defined procedures on an application server (or
that are candidates for running on an app server as is) that solve
or support the solution for the entire business problem.

• For existing code bases understanding the business need being
addressed, fully, is imperative.

• Does this mean I should never use includes? No it does not, it
means be very very careful about how and why you are using
them.

Non-Isolated Sub Procedures

Caused By

• Sub procedures that free reference buffers or variables created or
scoped outside of the sub procedure. This is really a variation of
the Indirect Indirection pattern, it has many of the same
symptoms.

Can Cause

• Buffer/Transaction scope bleed. Can cause limbo and deadlock.

• Unpredictable behavior, making it difficult to debug.

• Can cause data integrity issues if updates are predicated on a field
changed somewhere else.

Non-Isolated Sub Procedures

Solution Pattern

• Sub Procedures should not reference, update, glance at, be aware
of or otherwise try to use a variable or buffer not directly passed
to them or that the sub procedure itself did not create or bring into
scope.

• Note that app servers enforce this pattern by enforcing process
isolation. This is a good thing.

(Not) Model-View-Controller

• What’s Model-View-Controller (MVC)? MVC is the pattern that says
keep your business logic (Model) and user-interface (View)
separate.

Caused By

• Mixing Business Logic with User Interface code.

(Not) Model-View-Controller

Can Cause

• UI portability issues (e.g. give us a web / PDA etc interface).

• Trading Partner integration issues.
– Web Services / XML Data Exchange.

Solution Pattern

• Ensure new code uses MVC.
– Isolated atomic business logic on an app server (or a candidate to be

put on an app server).

Functions in Blocks

Caused By

• Use of functions in a block or where statement.
– Particularly on the left hand side of the assignment operator in a

WHERE clause.

Can Cause

• Database Denial of Service to the Enterprise.

• Unintended whole table scans.

• Performance and scalability issues.
– This can include sessions other than the session with the function

reference if they are attached to the same database server process.

Functions In Blocks

Database Denial of Service

• Because these are common patterns people may look at them and
say ‘well, we see this all the time and it really hasn’t caused us a
problem’.

• This example caused three days of serious enterprise wide
database availability problems and took three days of four peoples
time to the tune of forty+ resource-hours to locate…

• IF CAN-FIND(FIRST account WHERE INTEGER(SomeFieldWithAlphasInIt
+ STRING(AcctNoAR)) = 127112) THEN .

• This causes an error/retry loop in the database server process and
results in thousands of entries per second being added to the .lg
file of ‘Invalid Character in Numeric input A’.

Functions in Blocks

Performance

• But hey, do iCnt = 1 to num-entries(cChar) isn’t a big deal, why
should I care?

• It takes half the time to run an empty loop where num-entries is
pre-determined than to run the same loop with num-entries being
evaluated every time. (100 iterations at 150ms vs. 380ms in a
simple test).

• Q. When is a 30ms operation too long? A. When you have to do it
a million times.

Default Full Query Open

Caused By

• User Interfaces where the query backing a browse is open by
default with no parameters.

Can Cause

• UI performance problems.

• Network congestion.

• Heavy database load / load spikes.

• Performance problems for other users attached to the same DB
server process.

Default Full Query Open

Solution Pattern

• Do not default open the query. Other possible solutions include:
– Attempt to determine a common set of ‘open’ parameters that make

sense based on usage / function.
– Remember user settings, e.g. of the last twenty times the user opened

this query type they did so using xyz parameters.
– Use application clues, e.g. user was viewing the account 034303 on

the account view screen, so default to 034303 on the account
transactions browse etc.

WAN DB Connections

Caused By

• Opening a client/server Progress session across a WAN connection
e.g. a shared limited bandwidth leased line etc.

Can Cause

• Performance issues to include:
– Deadlock
– Slow user sessions
– Long transactions
– BI file growth
– Etc.

WAN DB Connections

Solution Pattern

• Remote clients over a WAN connection should make Application
Server calls to procedures residing in the LAN the database(s) live
in.

• Application Servers will utilize an optimized compressed protocol
for communicating via a slower WAN connection.

Default Block Error Handling

Caused By

• Coding DO, REPEAT, WHILE blocks with the default error handling
properties.

Can Cause

• Un-handled un-logged session terminating errors.
– You: “What error was on your screen?”
– User: “Uh I clicked it off”
– You: “But your not supposed to do that”
– User: “I forgot”

Default Block Error Handling

Solution Pattern

• Use the on error, stop, quit undo retry option with an if retry block
to log and handle the error in a friendlier way.

main:

DO ON ERROR UNDO main, RETRY main

ON STOP UNDO main, RETRY main

ON QUIT UNDO main, LEAVE main:

IF RETRY THEN

DO ON ERROR UNDO main, LEAVE main

ON STOP UNDO main, LEAVE main

ON QUIT UNDO main, LEAVE main:

/* Log / Handle / RETURN or STOP etc */

END. /** RETRY **/

/* Do work here */

END. /** main **/

Default Block Error Handling

Solution Pattern cont.

• This block style can be nested to catch various types of errors you
want to handle in different ways.

• Nesting in this way can be used to handle errors according to the
type and severity. A caught error does depending on type may not
have to end the session or operation.

Summary

Key Points
• Isolation of Atomic functions.

• Fine Granulation (but not too fine…).

• Does not rely on default error handling.

• Will scale under load.

• Address the current and future business need.

• Application Servers enforce many good coding
behaviors, scalability, high availability, etc.

Summary

Root Causes

• Not considering performance / scalability
– It’s only for five users…today. What about in five years?
– When is 30ms an operation too slow?

• Communication issues
– Between business process stake holders and IT resources.
– Miscommunication of specifications, rules, business needs.

• Time and resource issues
– Fixing the error not the problem.
– Make it work now and we’ll fix it later (which means never).
– Or, make it work this way for now, we know it’s bad, when we do xyz

we’ll recode it.

Summary

Signs of Anti-Patterns

• The same code is continually being patched due to errors.

• Making small modifications or enhancements is a chore.

• A procedure does not scale well as load increases.

• Difficult or unable to integrate with other processes.

Question & Answer

Questions or Comments?

Thank You!

Thank you very much for your time and
attention!

Solvepoint Corporation
882 South Matlack Street, Suite 110
West Chester, PA 19382

http://www.solvepoint.com

Building strong customer relationships through excellent service and
delivery of advanced technology solutions.

http://www.solvepoint.comBuilding

	Overview
	Overview
	Symptoms
	Overview
	Indirect Indirection
	Indirect Indirection
	Indirect Indirection
	Non-Isolated Sub Procedures
	Non-Isolated Sub Procedures
	(Not) Model-View-Controller
	(Not) Model-View-Controller
	Functions in Blocks
	Functions In Blocks
	Functions in Blocks
	Default Full Query Open
	Default Full Query Open
	WAN DB Connections
	WAN DB Connections
	Default Block Error Handling
	Default Block Error Handling
	Default Block Error Handling
	Summary
	Summary
	Summary
	Question & Answer
	Thank You!

