
dvpug Delaware Valley Progress Users Group
http://www.dvpug.org

What is this Document?
At the January 2007 DVPUG meeting, John Kendall gave

a presentation introducing us to some of the new features in
Progress OpenEdge 10.1a as well as some tips on object-
orientation, the new Eclipse integration, and more. John used a
combination of traditional slides and a mind map created using
Mindjet’s MindManager software (see http://www.mindjet.com
for more information) to effectively communicate the content of
his presentation. This document is a usable PDF export of that
mind map document.

The slides are referenced in this mind map, and are available
from the Past Meetings section of the DVPUG website at:

http://www.dvpug.org/meetings.html

How Do I Use this Document?
Each of the following pages is a capture of the mind map

that John Kendall used in his presentation. Each page is the same
mind map with different branches exposed for both on-screen
and printed media readability: the first page exposes the first
few branches of the map, the second page exposes the next few
branches, etc. Starting on the first page and reading in succession
should provide the reader with a comprehensive read of the map,
from the top down.

"Exploring 10.1A in Depth"
Presented by John Kendall

DVPUG, Jan. 24, 2007

Introductions
Presented By Solvepoint Corporation

http://www.solvepoint.com

http://www.eagleiq.com

Eclipse Integration (AKA OE Architect)

OO Advanced Business Language

Object Oriented Design

Conclusion/Recommendation

http://www.solvepoint.com
http://www.eagleiq.com

"Exploring 10.1A in Depth"
Presented by John Kendall

DVPUG, Jan. 24, 2007

Introductions

Eclipse Integration (AKA OE Architect)

Perspectives

Editor

code completion
formatting

See slides 2-11.
Accompanying slides available from
www.dvpug.org/meetings.html

AppBuilder See slides 12-14.
Accompanying slides available from
www.dvpug.org/meetings.html

DB Navigator See slides 15-26.
Accompanying slides available from
www.dvpug.org/meetings.html

Debugger See slides 27-30.
Accompanying slides available from
www.dvpug.org/meetings.html

Tools for Business Logic

What to exploit

Auto Completion
Macros
Meta-Catalog

Team Features
CVS Build in
Roundtable
other SCM plugins

What is missing?

Refactoring

Global Rename of Variables, Functions, Procedures, etc
Signature changes
Other common tasks

Code Formatting
Only handles case and keyword expansion
No indent , block formatting, style, etc.

Usable AppBuilder integration

i.e.. no way to add a trigger to a widget
without manually typing in the code
Same old AB just embedded in Eclipse

Documentation Tools
ala Javadoc
very much needed due to the nature of OO code

what to avoid Connecting to a db in single-user mode
debugging does not work
db navigator trouble

OO Advanced Business Language

Object Oriented Design

Conclusion/Recommendation

http://www.dvpug.org/meetings.html
http://www.dvpug.org/meetings.html
http://www.dvpug.org/meetings.html
http://www.dvpug.org/meetings.html

"Exploring 10.1A in Depth"
Presented by John Kendall

DVPUG, Jan. 24, 2007

Introductions

Eclipse Integration (AKA OE Architect)

OO Advanced Business Language

What's there

oo constructs

Encapsulation (Data Hiding) access modifiers

public

class A:
define public variable salary as

decimal.
end.

test.p
def var i as class A.
i = new A().
i:salary = 532000.
display i:salary.

private

protected

Inheritance single

Interfaces

Polymorphism

method overloading
method overriding

type casting
Classes as Data Types

Class Library
Object
Class

Name Space

procedural

Co-Exists
Required for "entry point"

Required for AppServer

syntax
CLASS

one per file

components

Member variables

Constructor
Properties
Methods

Destructor
INTERFACE

What's missing

Language

OO

abstract classes

abstract methods
no interface inheritance

try...catch...finally

Class Library

Object no default Equals implementation

Exceptions

OO equivalents of primitive data types

so, no Character , Date, DateTime,
Integer, etc classes
which means no Date:Equals method, etc.

why bad?

over time, developers _will_ create these classes
implementations will differ

compatibility will suffer

collections

hash tables
link lists

sets

io still limited to a fixed number of streams

sophisticated formatting

dates/ times

numbers
messages

regex

static methods / variables

prevents implementation of a number of
popular creational design patterns

factory method

singleton
No enforcement of Factory Class Design

Cannot group common utility methods
into a Class with a namespace

"package" access

reflection no way to instantiate a class dynamically

class level visibility modifiers
i.e.. all classes are PUBLICly accessible

cannot say "private class xxx.xxx"

Serialization no remoting

threads
no entry point (i.e.. main method)

case sensitivity

nested classes

static member class

Inner Classes

non static member class
anonymous class

local class

Why?
convenience
encapsulation

standard for class and method
documentation

Virtual Machine Garbage Collection

AppServer

cannot accept object instances

still only executes procedures -- no
method invocations
no RMI

Utility auto-doc ala Javadoc

What to exploit

Why is OO ABL good?

What to avoid

When should it be used?

Object Oriented Design

Conclusion/Recommendation

"Exploring 10.1A in Depth"
Presented by John Kendall

DVPUG, Jan. 24, 2007

Introductions

Eclipse Integration (AKA OE Architect)

OO Advanced Business Language

What's there

What's missing

What to exploit

Plugin Capability of Eclipse
vim !!

Java Perspective (JDT)

Deep thoughts by Jack Handy
``After three days without programming,

life becomes meaningless.''

Why is OO ABL good?

better encapsulation
improved error handling?

more maintainable code

more easily documented

promote resume through more obvious
and purposeful responsibility

Strong (compile time) typing

Able to create implementations of popular design patterns

Deep thoughts by Jack Handy

"A well-written program is its own heaven;
a poorly-written program is its own hell.''

" It is easier to write an incorrect program
than understand a correct one."

What to avoid
complex inheritance hierarchies favor composition and/or delegation

using classes where a simple procedure will suffice

When should it be used? To write business functionality that

Should be Encapsulated

Needs to be Re-used across the enterprise

Needs to be enforcing a name space

Can benefit from the application of
popular and useful design patterns
Needs to describe a hierarchy of data
and/or behavior

Describes/Implements a sub-system that
requires (dynamic) extensibility

Promotes well defined interfaces

Promotes adhering to good design principals

Object Oriented Design

Conclusion/Recommendation

"Exploring 10.1A in Depth"
Presented by John Kendall

DVPUG, Jan. 24, 2007

Introductions

Eclipse Integration (AKA OE Architect)

OO Advanced Business Language

Object Oriented Design
Patterns

Creational

Singleton
cannot implement since concept of
"static" is missing from language

Factory Method

Quasi-Factory

Example

class CalculationFactory:
 method public Calculator getCalculator():

 return getCalculator("fromConfig").
 end.
 method public Calculator getCalculator(calcType as character):

 if calcType eq "fromConfig" then do:
 /* this method opens a configuration file and returns the type specified */
 /* impl is omitted for brevity of example */
 calcType = readFromConfigFile("calculationImplementation").

 end.
 if calcType eq ? then do:

 return error "Calculator type was the unknown value".
 end.
 if sys eq "Avg" then do:

 return new AvgCalculator().
 end.
 else if sys eq "median" then do:

 return new MedianCalculator().
 end.
 else return error "Invalid calculator type specified: " + calcType.

 end.
end.

interface Calculator:
 method public decimal calculate(DataSeries series).

end.

class AvgCalculator implements Calculator:
 method public decimal calculate(DataSeries series):

 def var avg as decimal no-undo.
 /* calculate average of series */
 return avg.

 end.
end.

class MedianCalculator implements Calculator:
 method public decimal calculate(DataSeries series):

 def var median as decimal no-undo.
 /* calculate median of series */
 return median.

 end.
end.

FromConfig.p
 CalculationFactory factory = new CalculationFactory().
 Calculator calc = factory.getCalculator();
 DataSeries series = new DataSeries().
 series.add(1234.34).
 series.add(3434.33).
 return calc.calculate(series).

FromUserSelection.p
 CalculationFactory factory = new CalculationFactory().
 Calculator calc = factory.getCalculator("median");
 DataSeries series = new DataSeries().
 series.add(1234.34).
 series.add(3434.33).
return calc.calculate(series).

why "Quasi"?
no way to enforce the factory is used to
create instances

wiki http://en.wikipedia.org/wiki/Abstract_factory_pattern

purpose

insulate users from creational details.
Allow new types to be added without
affecting client code

Allow future changes to i.e. policy: i.e..
caching instances

wiki http://en.wikipedia.org/wiki/Creational_pattern

Structural

Behavioral

Items of Wisdom

Conclusion/Recommendation

http://en.wikipedia.org/wiki/Abstract_factory_pattern
http://en.wikipedia.org/wiki/Creational_pattern

"Exploring 10.1A in Depth"
Presented by John Kendall

DVPUG, Jan. 24, 2007

Introductions

Eclipse Integration (AKA OE Architect)

OO Advanced Business Language

Object Oriented Design
Patterns

Creational

Structural

Decorator

Adapter

Example

using progress.lang.*.
interface Stack:
 method public void push(Object o).
 method public Object pop().
 method public Object top().

end.

/* DoubleLinkedList */
using progress.lang.*.
class DList:

 method public void insert(DNode pos, Object o) : ... end.
 method public void remove(DNode pos, Object o) : ... end.

 method public void insertHead(Object o) : ... end.
 method public void insertTail(Object o) : ... end.

 method public Object removeHead() : ... end.
 method public Object removeTail() : ... end.

 method public Object getHead() : ... end.
 method public Object getTail() : ... end.

end.

/* Adapt DList class to Stack interface */
using progress.lang.*.
class DListStack implements Stack :
 def private variable DList as _dlist no-undo.

 public DListStack() :
 _dlist = new DList().

 end.
 public void push(Object o) :

 _dlist.insertTail(o).
 end.

 public Object pop() :
 return _dlist.removeTail().

 end.

 public Object top() :
 return _dlist.getTail().

 end.
end.

wiki http://en.wikipedia.org/wiki/Adapter_pattern

purpose

An adapter allows classes to work
together that normally could not because
of incompatible interfaces by wrapping its
own interface around that of an already
existing class.

wiki http://en.wikipedia.org/wiki/Structural_pattern

Behavioral
Strategy

wiki http://en.wikipedia.org/wiki/Behavioral_pattern

Items of Wisdom

Conclusion/Recommendation

http://en.wikipedia.org/wiki/Adapter_pattern
http://en.wikipedia.org/wiki/Structural_pattern
http://en.wikipedia.org/wiki/Behavioral_pattern

"Exploring 10.1A in Depth"
Presented by John Kendall

DVPUG, Jan. 24, 2007

Introductions

Eclipse Integration (AKA OE Architect)

OO Advanced Business Language

Object Oriented Design

Patterns

Items of Wisdom

Consider using factory classes

They have a name

createObject

createLargeObject

createSmallObject

They are not required to actually create a new instance

They can return sub types

Minimize accessibility
always prefer private to protected to public

once public always public

Return interfaces this way, the underlying implementation can change
i.e.: return Account instead of
CheckingAccount

Favor composition over inheritance
breaks OO! encapsulation (data hiding)

appropriate only when the subtype "is an"
instance of the super type

Design and _document_ for inheritance or Prohibit it

Check parameter validity

Make defensive copies
public accessors and object references

favor immutability

Refer to objects by their interfaces

new implementations can be created safe, powerful functionality enhancements

existing classes can be retrofitted

help to define mixins (i.e.. Comparable)

promote non-hierarchical frameworks

Use overloading judiciously overridden vs overloaded

Avoid strings where other types are more appropriate

Acknowledgement:

These and other great items can be found
in the book "Effective Java" by Joshua
Bloch

Even though they are Java specific, most
items are applicable to Progress OO as
well as other OO languages

Deep thoughts by Jack Handy

Conclusion/Recommendation

"Exploring 10.1A in Depth"
Presented by John Kendall

DVPUG, Jan. 24, 2007

Introductions

Eclipse Integration (AKA OE Architect)

OO Advanced Business Language

Object Oriented Design

Conclusion/Recommendation

Embrace the OO, but realize they are still
a work in process

Begin to familiarize yourself with OO terminology

Begin to familiarize yourself with Design Patterns

Start learning and playing around in
Eclipse and/or OE Architect

Download the OE101A Evaluation http://www.psdn.com

http://www.psdn.com

	cover.pdf
	mm - intro.pdf
	mm - 1.pdf
	mm - 2-1.pdf
	mm - 2-2.pdf
	mm - 3-1.pdf
	mm - 3-2.pdf
	mm - 3-3.pdf
	mm - 4.pdf

